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ABSTRACT ..

Let-X be any given base space and let F(X) denote the class of all fuzzy subsets of X, P(X) the class of all ordi- -

nary subsets of X, and S(X) the class of all random subsets of X. It is now known that a partitioning of S(X) AvSab Ilt? y C,0de
exists whose components SA (X) are indexed by arbitrary Ae F(X), with equivalence for each component
determined by the one point coverage relation ,A(x) = Pr (xeS(A)), for all xeX, S(A) arbitrary in SA(X)- with i
S:F(X)-S(X) denoting any corresponding choice-miapping.
Suppose% is an n-ary operation on F(X) X" X F(X) and S (as above is given. r' is said to induce a wcak n-
homomorphism iff there exists *:P(X) X..XP(X)-P(X) such that for any AI,.. ,An cF(X), and thus
S(Ak)ESAk(X), k= i,.., n, a joint distribution of (S(AI),... S(An)) exists such that for allxeX,

0*(A... I AnX) Pr (xeS (A,,.. ,An))) = Pr (x e* (S(A 1 ),. . , S(An))). -

Characterizations are Qbtained for the class of all n-ary-fuzzy set operations @ which induce weak ni-homomor-
phisms with corresponding * satisfying nested cases of measurability, continuity, and general composibility.

KEYWORDS obtained from. statistically independent 0-1 marginal random
variables with parameters related to a given fuzzy set. Specif-

Fuzzy sets, level sets, homonmorphisns, fuzzy set operations, ically, it was shown (summarized in Theorem I of this paper)
(ordinary) set operations, random sets. that for aE given fuzzy subset A of space X, there always

exist random subsets S(A) of X (in general, non-unique) such
1. INTRODUCTIOIN ,1that A and S(A) are equivalent under all one point coverages,

ith ti d i fd bii.e., A(X) = Pr (xc S(A)), for all constant x c-X. Furthermore,
With te introduction of Zadehrs basic paper-in 196t/y1, a most of the commbn fuzzy set operations, such as union, in- "rG
ned approach to the modeling of uncertainty began. The tersection, complimentation, subsetting, cartesian product,
fledgling discipline of fuzzy set theory Ils now grown to en- and funi~ional transform torrespond homomorphically under
compass well over two thousand papers. (See the 1800 refer- the mapping A -, S(A), for all fuzzy A, to ordinary operations 4
ences in 171, as of 1979) Applications of fuzzy set teclnjqucs for random sets (summarized in Theorem 2 here). Consequent-
have been made to a wide variety of subjects, too nuincro s ly, these fuzzy set operations can be reinterpreted directly in
to be mentioned here. (See, e.g., Dubois and Prade's recent terms of corresponding ordinary set operations among random
text (21,) As early as 197 1, Zadeh himself recognized the sets. One application of this connection is to deductive reason-
role that level sets I played-with respect to fuzzy sets [221. ing, where both fuzzy set and probabilistic techniques can be
In 1975 Negoita and Ralescu 1141 (see also 1171) obtained a compatibly utilized [51. (See also, [61, Theorems 5-7.)
representation-theoren for fuzzy sets and certain of their
operations. (See also [ 161 for another level set approach.) i'he thrust of this paper is to expand earlier unary and binary
Independent of this development, Goodman (41 in an unpub- Ivmomorphi. relations between fuzzy and random set opera-
lished paper in 1976 derived a simple honinmorphi relation- tans, by obtaining systematic; characterizations for three
ship between fuzzy and random sets and their operations - in classes of n-ary fuzzy set operations, which under the map-
this case the levels of the set ,nvolved were randomized un- ping6-- or any fuzzy subset A of X, yield homomor-
formly (See also Nguyen's refornulation of-this result I 151. phiL. images, i.o., ordinary set operations applicable to the
A listing of papers contrasting the classical probability and random sets S(A):
fuzzy set approaches is given in the introductory section of __

[61 Additional comments on the controversy may be found I. 'enerahzed tom ositmolimary operations are pre-

in IlI, 131, 1131, 1181 - 1201.) sented in Theorem 3, unary operations, in Theorem 4, -nd
wary operations in"I'liorern 6)

The two cent (independent) papers of 1lhle-[91 and Good-
man 161 establish that, at least from a formal ,iewpoint, 2 coitinuous..arom S (lemoustrates the general case,
there exist syStema1tic connections hetween fuzzy set theory Corollary I exhibits clharacterizations for statistically iode-

and its operations, and probability theory and corresponding pendent image randon sets, ant Corollary 2 is coni-erned vith
operations, via the concept of randon sets. In the latter a certain simplified subtlass of .ontinuous operations)€

paper, one of the connections (So-type) makes use of the I" ew e rable (T-heor- n 7).
basic level set mapping, used earlier in (4 1. while another . Ifi tle ca,,e of binary fuzzy set operations leadng to hoino-
(To-type) is related to the product probability measure morphic ralom set conpostion (Thorem3t he charac-
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terizing structure for the membership function is a simple (ii) Each SA(X) is nonvacuous,.and in fact, SU(A), TA e
sum of at most-four terms, each term being also an elementary SA(X), where SU(A) dfA (U, I I, U a uniform ran-coffibinatiO~6filie'individual component membership func,

combnat6Wtfthlndiidul cmpoent embrshp fnc~dom variable over (0, 11 is determined by OTA which
tionsandlor a fun conal form that satisfies a constraint equa- corre oteroduct probaility meA ohe
tion (E . (2)) - seeylsb Examples I and 2 for further clarifi- corresponds to the product probability measure ofthe
cati , Ih turn,'this leads to-16 subtypes of binary opera- statistically independent 0-I random variables
tiontj ll explicitly jiven in Table 1. These include as special with Pr (OTAx) = 1) = A(x); all x c X.
cases zzy union, intersection, bounded summation, product.
etc. _-o_ unaryoperations, on the other hand, only identity, (iii) If A e P(X), then SU(A) = TA-- A and (A}= SA(X)
fuzzy complement, the hull set reducing operation, and the
universal set expanllihg operation, as given in Table 2, lead to - If W e S(X), then A (W) cF(X) is defined by OA(W)(x) f
hiom omprphie'rando'm set compositions. Another relatively Pr (xeW), xeX. Note -by definition, A(W) - W. Note also,
simple characterization is obtained in Corollary], for n-ary W, S (A(W)),TA(w) e SA(W) are in general all distinct.

-fuzzy-set ojratibns leading to continuous homomorphic
random et operations, when the n random set factors are Fuzzyset operations , -, , Proj I , are defined as.
chosen to be statistically independent, and when the mapping. A ) B( x ) -A(x) + B(x) - A(x) B
A -" S(A) is ei ther of two types: S(A) = SU(A) or (A) = TA B
(see Thereuiil). Part (iii) of Theorem 6 also exhibits a OA-B( x) -A() 'Bx)
straight forward claract~rization - a sum of products of OA (S) B0x y) = OAW ' 0B(Y)
factor membership functions and/or their complements - for
n-ary fuzzy set operations leading to homomorphic random eproj I (D)(X) sup 0 (x,y);
set operations which are in the form of compositions and for ye D
which the individual random set factors are chosen to be OA(2) B ) = X 0A( + (I-X) ¢B)
statistically independent. Theorem 5 and a specialization of
it, Corollary 2, present very general - and somewhat more A is identified with OX(x) m X; 0 4 X < 1.

complicated - characterizations for fuzzy set operations (The fuzzy set operittions U, , X. - , f (), etc., are-theusual
leading to arbitrary continuous random set image operations. ones.)
In this case, a typical n-ary fuzzy set operation is shown to be Theorem 2 - (Modification of Goodman (6], Theorem 5)
determined by a (pointwise-dependent in structure) finite For any A, B e F(X), Ce F(Y), f::X -€ Y, D e F (X x Y):
signed slim of probabilities corresponding to each random set SU (AUB) = SU (A) USu(B)
factor cover of a given fixed finite subset of X which is also
disjoint from another such subset of X. Theorem 6, which SU (AAB) = SU (A) ASU(B)
treats the general measurability situation can be interpretedas Su (AXC) SU (A) XSU(C)
being a uniform limiting case of reapplications of Theorem 5. SU (X- A) =X- Slu(A)

(excluding the boundary OAi ( -U))

2. PRELIMINARY DEFINITIONS AND RESULTS SU (f(A)) .C f(Su(A))

Let X denote a given base space, P(X) its power class; G(X), S (f-I(c)) = f-I (So(C))
often iuentified with the latter, the class of all membership SU (proj I (D)) : pro) I (D) 4 proj I (SU (D))
functions of elements of P(X); (X) the class of all fuzzy sub- 7 ( B T UT
sets A - identified with the class of fuzzy set (oi subset) A B
membership functions OA : X - 10, 11 ;S(X) the class of all TA B TA TB
random subsets - identified with the class of all probability
measures on P(X), with suitably chosen o-algebras containing TA ® C TAXT C
the sets C(x) = {B I x e B P(X)) x c X. (Sec 161). Let S', S" TX -1 A X -1 TA.

S(X) and A e F(X). Define A S' (or S' A) by, A(x) Tf(A) < f(TA)
Pr (x c S'), for all x c X, Define A < S' by, OA(x) 4 T r-I(T)

Pr (x e S'), for all x c X. Note 'df means "is defined to be H-(C) C
equal to". TprojI (D) : proj 1 (D) proj (TD)
To provide necessary background, two previously established
!heorems are summarized and reformulated. TA® B (X TA) U (( l-) n TB),

where TA, TB. TC arc to be chosen to be mutually statistically

independent.
Trheorem I- - (Goodman 161, Theorem 3)

(i) S(X) = 5A(X), Let S: F(X) -, S(X) be such that for each A c F(X). SW4)
A cP X) c SA(X) for some fixed choice of S(A). Then S is called a

A0choke-i unction.

where SA(X) df {S(A) I S(A) e S(X) & A S(A)) Ve will be concerned with the specification of joint distribn-

1. indicating disjoint union. tions of (S i). . S(An)) for all finite n and'all A,. .. A,
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c F(X). Thus, if a set-valued stochastic process (S(A))Ae/.(X) OS(Aj)(x) 1), in order to obtain the eni t joint distribution
d S, indexed by F(X), over P(X), caa be constructee, all
marginal distributions of the S(A)'s will be specified-and con- of x c or 4 S(Aj), j = I ... n-; in wlichicas. ,, " =uchjoint
sistently-defined. This indeed will be the case for two important probability, analogous to Eqs. (5)-(8) can be written a,, a
examples of S : S(A) = SUA, where UA is uniformly distributed- simple positive and/or negadve combination of6)':.

over (0,1 1, Ae F(X) and S(A) =TA, A e F(X). For-any pair
of such.random sets S(A I), S(A2) (considered as a bivariate * E:ample I. The case S = T)

marginal random object from S), the following constraint and By choosing, for-any AI, A c F(X) and x 6 X, 62 (AI, A2
relations must hold: For any A,, A) c F(X) and x c X, x) arbitrary fixed but satisfying the constraint in Eq.(2), this
62(A1, A2; x) df Pr (x C S (A,) & x C S (A-)). (I) specifies the total joint distribution of the 0-1 random varia

62 always satisfies the fundamentai joint probability constraint- Aes (2, ,(xTA2)). Keep x fixed. Then by a similar
argument, Pr ( x)TAI(x)= I &eTA.)(x) = I & eTA(x) I)

L2 (AI, A2); x)' 2(AI, A2); X) U2 (AI, A2; x) , (2)where ( may be chosen arbitrary subject to a constraint (see-[61,
where Lemmas 1, 2 and Theorem 3 for a similar result), and the

L2 (At, A2 ; x)-4-f max (0- Pr (x -SAl)) construction may be extended indefinitely, yielding all-
+ Pr (x t S(A 2 )) - I) consistent (or projective) finite combinations of marginal
max(0 Aix)+ A x)- I) probabilities for all A,, A2 , A3eCFX). Then (e.g., see 1121,

pp. 92-95) a probability- measure x can be obtained for the
d =0 (X) (3)

(A 0 B) base space X (0, I)-= (0, F(X)= G(F(X)) (with a-
U-, (A,, A.) x) min (Pr Ix c S(A I)), Pr (x e S(A2 ))) AcF(X)

corresponding a-algebra of subsets) such that for any A1, A.)= AB(x) - F(X), (OTA I (x) 1TA2(x))corresponds to the (Al, A2)tll

using Theorem i. marginal distribution with respect to . x, etc.

It should be -emarked that L2 and U2depend only on the Again note the special case 62-(AI, A2 , x) =Al(X)•A2(X),
marginal p.,,babilities. For the statistical independence case, for all A 1, A2 c F('), leaes to a consistent construciion

62(A 1, A2 ; x) = Pr (x c S(A I))- Pr (x c S(A2)) = OA Ix) of p by chouwng all marginal 0-1 random variables OT-(x)

Six) away., s satisfies Eq. (2). to be stat,stically independent. In addition, note that for my
Then t.sing the basic properties of marginal and joint random construction of the TA's, we can y consider
variables and Eqs. (I)-(4) and Theorens I, the four possible measure p to s to mutually tic .

joint probabilities for the events x or I S(A1) and x or dent probability measures, for each distinct xeX. Hence, indenAt -mequivalentlyacfor_ thei0-Inrandom variencbes
S(A2)) - equivalently, for the 0-1 random variables S(A I)(x) turn, product probability measure p can be constructed from
.ind S(A )x) - can be determined: the px's. Thus p corresponds to a well-defined joint probabi.

Pr (xc S(A)& xc S(A2))-- Pr (xcS(A )StA 2)) listic specification of the process iOT I-Ac FIX)),orequiva-

-rtStA)x)=I & S(A,,)(x) = )= 62 (AI,A, .x) tS) lently, for (TA I A F(X)), which is compatible witl-k all origin.
al one- and two.level marginal distributions of the TAs. Thus1'r (x C SfA 1 ) & x I S(A2)) - Pr (x c S(A I) -S(A2)))

-Pr (OS(A 1)(x) = I & OS(A)(x) = 0) any given collection of fuzzy subsets can be made to corres-
I 0pond to a single joint probability measure which is compatible

= OA I(x) -2(A I" A ; x) (6) with the relations A - TA and possible additional bivariate
r tx 4 SfA I ) & x c SiA,)) S Pr .x 0 S(A2)- S(A1 )) distributional constraints on (TA, TB). for any A, B c F(X).

1-Pr teStA I) Wt ) = 0 & OS[A )(x) c 1 1 Ixannple 2. The case S = Su .
- 6 A . X) ) As a second example, consider the situation when S = SU

[ItxeA 1 )&- xd SA))= Pr (x C X -(S(A) USA M) More precisely, consider S(A) = SU(A). for any A c F(X).
'rOStA I )x) = 0 & OS(A,)(x) = j)

where iA is i uniformly distributed random variable over
t- A~tX)-¢A.,tx) (AI.,\~2 x)€ 10. 11. Let '1 be the probability distribution func.. for the

I li iove rcsullts in-is he extended to the joint dist ributioi. stand,lrdi/ed normal distribution n (0. I). Define the irans-

l i"' YS(A,) ( xl . S(A1 )n)(X). ,uhic IQ Onsitec ornu r by:
onlmlon n (or Joint t0-I events again. sec 16.Lcnlina, X R EI R11FX) - X 10.11 10.1 1  XFFX. "
1.2 .il lieoreiv. 3 Ihere. it is sufficient to specify for I Ac:(X) AcFi(X)

I. . 61 (AI i ') S Pr ( I )(X) I & .. & where for any
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f= (XA e - Ar-X cR )cF(X) , ()t~ 'OP(xA) (S(A1 ),.., S(A,,)), (9)

Let y: (X) X F(X) -~ M, b,. any given marginally consistent- for all A ~ ,An-e F(X).

correlation-function where M d4f I~ i) I<r4 I and Conversely, given any fuzzy set operation I@,it is of interest
-*~ ~ {01e h zr I - I to determine if some ordinary set operation * exists satisfying

let mn :F(X) -{)bthzeomean function. -Then a unique ()
-gausia stchasic rocss A VA F(X) can always be We will consider three general (nested) cases for *: composition,

cobstructed over IRFX) corresponding to probability continuous, measurabI6.
measure pi etc., which has the specified y and m. -(See. e C. Consider first the composition case. We say-ordinary set
101, for more details.) Then, since it readily follows that T operation * is a generalized composition iff hk: X -X.

is ameasurable mapping, T(V) =(II(VA))A C-(X) is a stochas- k = 1, . . ,n and for each x eX ,! gx (0,1) X --X(01-)-

tic process over 10, I)F(X) with the-following properties, (0,l) such that for all BI, .. , Bn CP(X),

(i) For any A e F(X), the marginal random variable PA 0B,. l)X x(B '1) On (00"0
'P' (VA) is uniformly distributed overi10, 1I Note that for any given B1 ,. Bn, 111,. -'n, x as above

(ii) Subject to consistenc' for -i for n > I and any A'~ (B I,. - Bn) can be any-of 2A 11 pnssibl,: cimbinatior.s for
An c F(X), x e X,6n (A,.-., Anl'; x) can be made arbi.&X
trary-within natural constraints (again see [61, Lemmas invole.ing ordinary unions, intersections and complcmentsof

1, 2-and Theorem 3). In particular, for n =2, 62 (A,,1 es, I)I *' n n
A,) ; x) may be chosen arbitrarily to satisfy Eq. (2) (for 4. BINARY AND UNARY-COMPOSITIONS
the usual consistency checks). (This follows directly
from a continuity argument applied to the two boundary Mierem 3
values in Eq. (2), which corresponid to r = I (yielding Let n =2 and S be a given choice function wall all bivarnate

UA A) and r =-I (yielding UA1  I - UA,), for (S(A:, S(A2 )) assumed to have specified consistent joint

'y (A, A2 .) -distributions.
(A,, 2)-) i) Then binary fuzzy set operation @ ind.uces a weak

(iii) Tile following two special cases of (hi) are of particular -2.homomorphisin relative- tc~some * being a generalized
importance: composition (as in Eq. (10)) iff @ ha's the following

(a) Choose all UA, A c F(X) to be statistically indepen. form:
denit and identically distributed - with common
distribution being a uniform one over 10, 11. 9 (A 1, )(x) gx(OO) Ocl~A 1(11IMx) .- O,(h2-(X))
Thus all SujA (A), A c F(X), are statistically indepen. + 62(A1 , A'.: x))

.kit 2UAI r() Thu all +g(1,) '(OA I(hI )- 62(A AlX; x))

(b) Chanse all UA _U () hsalSUA(A) E2 xO0(A(1() 6( .A) )

SU(tX), A c F-(X) are highly staistically dependent. foa+ 8x( 1 1) 62 (A1, A.): x) , 0I1)

(T1his corresponds to correlation matrices f lA1 , A, e F(X) and xeX : gx(i,j) c(0.1)

r' I 'r11 (ii) By varying the-distribtions of S(A1), S(A2 )) and tihe
(r I)1 H I I function gx :(0,l)X (0,l-(0,l, thle 6)A,,

Finally, note that no9 matter what chao func1Is S ju.a. .an be chosen arbitrary fiXed to Satisfy Eq. (2), up to
forn >i I fixed, S(A 1), .. , S(A,) can always be chosen to be consistency. Note, in addition, that thestatistical
statistically independent marginal random sets of thle product independence case 6 2 (A 1.A.; . x) = O IW 'OA) X

pro abiit me su e X ea h pdcr e p nd n o S A .aw ays s tisfi s Eq. 2. In general, the coefficients gx (j)
AcF(X) - may bearbitrar?,!10.1). for i.j c{0.l) :forall A,A,e

3. THlE BASIC PROBLENI FHX).-X C X.

Withi the preliminary resultscestablished, wec may now pose the tL'h (A,.A2 )(x Plr xc *(S(A 1),S(A2))))
basic p~roblem. Let S be a general choice function and assume =Pr (0*(S~~.S~)()I
(S(A)),\CI(X) is some wvell-dcfincd stochastic process over = (r I) S(Ai)tX) S,)ti(l I

P(X). Ilence. (S(A 1).S(Will) for all A,.... An C F(X) Z vro& I Il~x'
can be assigned consistent joint distributions. Mien for certain tI .)) C V-(i tSA~1
classes of ordinarvsiirperations *:P(X) X ..xp(X)-' p(X) & 5 ,,lix i J

we eck corresponidinigclasses of ftmzzy setoperaitions *.
HX) .~F(X)-~ (X) uch tht ~ iidicesa wak-i~limo- Which yiclds thte torinl in [.i. ii ~ .ii. ie 9t Ll:,t

in1orphiin relative to M4ie~ 5 8).)
SI® )(Al. -A1 ))--( (A, A' )
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Note the application ofTheorcmt 3-(via Examples I and 2 The analogue-to Theorem 3 for unary operations is an import-
previously discussed) to the special cases: S(A)= SUA(A), ant special case:

~Theorem 4
for-either UA U, or UA mutually statistically independent. T

Let n = I and S be a given choice function. Then unary fuzzy
For all A eF(X), where U and each A are identically distrib- set operation @ induces a weak I-homomorphism relative to

uted uniform over 10,11; and TA. some * being a generalized composition iff @ has the follow.

Table I exhibits, for a given S; x e-X; A 1 , A2 6 F(X): h 1, h2 : ing form:

the 16 possible types of binary fuzzy set operations @ induc- *C(A)(X) =g(0) * (-00,((x))) + gx() A(h(x)),

ing weak homomorphic ordinary set operations * in compo- (12)

sitional form. By following the comments at the end of where as gx ; (0,1)- (0,11 varies, gx(O), gx() may be arbi-
Example l, a similar table (now using63 in addition'to 62) or trary c (0-1) ;for all Ac F(X), x e-X. In this situation, for

223 = 256 entries may be constructed, etc. (See Theorem 6 any x eX, B C PM)

for the general cdmposition case.) x c * (B) iff x e g(B) (.x), (13)
Thus we see that several different binary fuzzy set ope;ations where for any )re X,

can induce the same ionomorphic image - binary random f( h-(B) . Oh-(B)) (14)
set operation -for :tl same fixed choice function, by varying g(B) (y) M -q r - (B)) 1

the statistical dependence (or stochastic process) between the (
random sits. again using the convention n () = X ,-u ( ) -.

• " .o- .0'-

Table I. Tabulation of Possible Binary Fuzzy Set Operations Inducing Weak
lomomorphic Ordinary SetOperations in Compositional Form. .

Case gl (1) (S(A 1), S(A,)) 0* (AI, A2)(x)

t .I - 0

2 (0,1(S(AI))U2 -AI -

3 (01)) " - 1 A I )  0,%2('2(')) -62

4 h(,o (S(0)1)) " h -1IsW A) )  01\1(I1W) - 12

5 (0-0) 62 -6
5 (0.1)'h0.0) AI)h;(S(,)) 62

6- oo),(O)} X-.h 1 (S('%2)) I -0,% (h 2W)

7 10-0).-) x - (h I (S(,\1)) .h I (S(,2))) 1-0,, II(x))-0,\2 (h))'- 2

9 (o0.0.0)) h- (S(A )) A h-_I (s(,\J) ( , (X

10 (O.),(.)) h2 (St.\2)) 0,0 112(x))

91 ((.).(.)) 0%) ,(h1I

li t o. .o)) X (i, (S(A, )) n I I S(A,))) I -6 ,

1 fRo...) D hz(S(,W))u h Ix (S( 1~~{))) 1 - ,ltl 2),

0 (O.Ol)..)- t(s(,))(X-- lit,)) I -0,%4x)) .2
-1 -

13 (.01).l (,O). (l,)) /Ii- , (S(Af\I}I h 1 (5( ))) (iij(x) N '2fx -62

I1) (I00)(,.0(I,01, ( I()IX1(SX I

(: AI. x ay t' main saEovig (,A2). gX is assumcd to be lie same fos all x c X.
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Table 2 lists the four possible unary fuzzy set opcrations an at mostcountably infimte space, then .X'and -Ywill also be
Iieading to weak homomorphic ordinary set operations in second countable and separable.
composition form. Theorem 5

Table 2. Tabulation of Possible Unary Fuzzy Set Operations Let n ; I be arbitrary fixed and let S be a given choice func-

Inducing Weak ltomomorphic Ordinary Operations in Com- tion with all (S(A I), -. S(An)) assumed to have a specified

positional Form. consistent distribution.
(i) Then n-ary fuzzy set operation @ induces a weak

n-homomorphism relative to some ordinary set operation
Case gx (I) * S(A)) 0@ (A)(X) * being continuous; iff @ has the following-form:

I .o .o- 0 0@(A I ... ,An) x)

2 (0) X'1i- (S(A)) I - OA(h(x)) n= Pr/Or & (Mj

3 (1) h-1(S(A)) 0A(h(x)) PeK x j=l

4 (0,1) X I Z 1(_Ijcard(B)+l
o - - . /.over 211 B,

Be P(Kx), for
5. GENERAL RESULTS M(Bj) M(BD) =]

The following more general results require some topological for all j 1 j 4 nI

background. (See, e.g., [1i for all relevant definitions and Pr& (MI(Bj) C S(Aj) C (X - A'(Bj))I (18)
general relations.) (=l
Let 1 be the discrete topology on (0,1} . Thus the open sets for all A1, .. An c F(X) and x c X, whe.re not depending on
foroiconsist of P((0.l)-). Then the natural topology 9for the A s, 3 finte (or vacuous, sets M=,, N., e P(X) with

G(X), noting G(X) = X[0,1} = (0,1)X , is the cartesian M(Bj) d~f Mvi, V(B,j) d__ U N for each x eX, Kx is
xeX vcB r.'BV,

product (or, equivalerly, pointwisc convergence) topology, some finite index set.
Open sets for 9consist typically of all unions of sers of the (it) Not only may the (S(A I),_, S(An)) be vaned in joint
form distribution, but also the Mjs and Njs may be chosen

e(z,a) (0] I OB C G(X) & OB (zi) = ai , for i arbitrary finite-(or vacuous) .- P(X) ; Kx may be chosen
w e q (1) also as-an arbitrary finite index set, for each x e X.

where

z-- f ,dif ;zieX,aiC(0.l) ;i=l,...q. (Proof:
-Using Eq. (17), for any ordinrfy continuous n-set operation*,

zc X X--X X,a c[0,1 iX--X (0,i}(q factors); q ;l !,can all for any Bj,.... Bn e P(X) and x c X,
be chosen arbitrary. In turn, let Vbe the ntural cartesian
product topology for G(X) -X-X G(X) (n factors). In this case. xc*(Bi . ., Ba
the open sets for /Vconsist of all unions of sets of the form iff n I.. ) € t n

iff~ ~ ~ ~ (0I-BCU X (Zuj,j)
01 x--X e, ,where each ei is arbitrary open for ,9. ,' Kx j=

Note that for any ordinary set operation *, there is a unique for some finite index set Kx, etc.
corresponding * , , : G(X) X--X G(X) - G(X) (n factor,). &

Then foranyxcX.Bj,..,.BnCP(X), iff Or & (,=l,,1 ¢ V li. X j . (19)

where
and *(. B) if ,(B .Bn)(X)= I Zjt t lq, such that ao t I) (20a)

iff( (G1' .... Oin))(x) i N tf {Zj I I =I< qj such that a,) t =0) .) (20b)

iff (OBi-- . )cTl (O(x.)). (17)
Corollar I

In particular w,: can let Bj = S(,\j) ;Aj C iF(X);j=l. ... n. We Suppose for givcn tchoice fintrn S. that. fur any AI. . An

say fWuzy set operation @ induces a weak n-homomorplusm FX). SIAI). . StA n} are always mI)tually statistially

relative to ordinary set operation * being continuous iff \, is independent. Then the characterization for 0 in Theorem 5

continuous willi respect to topologies (V. 9)anil Eq. (9) can he nrtle to depend on A I....A AIlirotrh J'A i* An
holds. dhrectl.y anti not on probability statements involving SA).
i) is cumpact. Ilausdorff, and second countable and separable

Consequently. the product topologies hyTychnofrs ,1. . . for any AI. An e FX).hin either case I or
Theorem) gannd Y'are also compact ant Ilausdorff. If X
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case 2 holds-for choice of S: for case (1) and Eq. (23) for case 2 - in (i) become
Case 1: For any A e FIX). S(A)- SU A(A), where as marginal here, respectively i

random variables, cachl-UA11 is uniformly distributed ovcr (0,11 OR (A. I .. An)() j-1Iw'(}A) 2'
but jointly all UA's for different A's are mutually statistically se t ~
independent. In this case, the characterizing equation. Eq. A (~11 W" ((v}, Aj) * (23')

£ (18), becomes e j.

0VAl...,An)(x) = ((...)C3rd B3+l where w' is given in E3q. (22) and w"-ftn Eq. (24). for

( overall B, 
B=(v).

forMJ(B J) rAN(B~j) Note that for Corollary I and 2, thc construction of induced
ofor aIli, I < j -< n homomorphic *, given (E) remains formally the same as in

n liB.the general case as given in Eq.(] 9).
11 C' B AP) , (21) Consider now the case of generalized composition.
N~ Theorems 6

L'i(B, p) 4=finf (OA-(y) - inf {ylycX& 0- [y'l ILet n > I be arbitrary ixed and let S be a given choice

yeMf(B) I J function with all (S(AI).... S(Ai)) assumed to have a

(W(B) .) .(22) specified consistent distribution.
Wi When * is a generalized composition, * is continuous.

-Cas2: For any A c F(X), S(A)MTA., where jointly all of lte since, for any x c-X,

TA's are mutually statistically indclpendeast. In this case, the n~l((~) X~h() 1

characterizing equation, Eq. (18), becomes (a c ,i)gx 1 iM =1 J

0*A,..,An) fover all B,

for,11(B,j) (I N(B,j) phism relative to some ordinary set operation * beingi~ BePK)2 i)nr uz e prto nue eknhmmr
=t for all j, I <j < generalized composition iff R has lte following form:

11 Iwc" (B, Ay) (23) 'n) =

0% WI -i 11 (1 -OA(Y))- (a..a~
(ye"II (BM) ' i (yeiV"(BA) 'i (24) (0,1); X --X (0.0)

Corollar 2 Pr (Xe (A h1  (SA 1 ).-4ul I (S(u~~))), (27)
Let n > I be arbitrary and S a given choice function with all (I <j < n. (I <jn N,
(S(A1 ),. ... S(Ai,)) assumed to have a specified distribution. (~such that a 1 )J (such that a1j =0)

Gi) T1hens n-ary fuzzy set operation (E induces a weak where
n-homomorphism relative to some ordinary set operation gx : (0.1) X--X (0,I) - (0,1) (n factors)
* being continuous such that the sum in Eq. (18) (i)B ayn ledsrbtoso SA)...SA) n
becomes a non-negative one, i.e., all terms for non-(iiByarngtedsibioso(SA)...(A)ad
iingletons B are vacuous. i.e. lte function gx. lte coefficients gx (atI... and can be

arbitrarily chosen c (0.1), xe X. There are 2- such
g.s. for cacti x c X.

nr~1 CSi.C 0i1 1 ~, 2) v) if.S is such that S(A1). .S(Anaalystisily
t'EK ~ jl3 J independent, then Eq. (27) reduces to

and thus in Eq.(19),dcfining*. Or is replaced by *( 1 .,n)X) a

Or (disjoint). fff foa~ll x cX and each pain'1 , Pv, c K. Z (8x (a I --,n)
V(tap -an)c

with' vI, P2 there is an1 integer j. 1 4. < it, such that (io.I) X--X (0.1))
c~thcr 0,0,1  1r 1P(t/)) - 1 (1 -0 (hol281

that Eq. (25) holds. SsIla (ia ii
(is) 11 also S is chosen so tliat M(AIL . StAn 1 arc alliit

mutually Statistically inidependent. tur all A,.. .A,1
c I(XE t.hen ltec chiaracteriaig quitin F+. (21)
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-Finally, we treat the general situation of an n-homomorphic 0& (A, . An)(X) = limit O@R(A I .. A,)(x)
induced ordinaryset operation being only measurable with 2 + co

-respect to suitably chosen a-algebras relative to topologies T/ = limit .cOS- (A! . .. , An)(X), (29)
and X.+C
Consider again the fixed compact Hausdorff topological where for each positive integer 2, @(AI,.., A.) is defined
spaces (G(X), ,) and (G(X) X--X G(X), 1/) (n-factors), and from Eq. (18) with 0 replaced by 02 and each Kx by (finite)
choice function S, where for any A n .. .. AeF(X),(S(AI), Kx.q, where the limit in Eq. (29) is uniform with respect to
... S(An)) has a specified joint distribution. Thus, each mar. all x e X, and where ie is defined from Eq. (18) with %

ginal random subset S(Aj) of X corresponds to probability replaced by @'g and each Kx by K, U
space (P(X),.,d'! . q-). as well as to probability space (G(X), t=2 (ms

SNj.pj). Recall from section 2 the requirement that the a- countably infinite, and consequently the last part of Eq. (18)
must be replaced by a limit).

algebra , must contain all C~x , x C X. Thus, 3. must con.

tain all 0 (x, I ),-x e X, and hence all countable unions and
intersections of 0 (x,I), x e.X and 0 (y,o), y e X. Recall also 6. SUMMARY AND CONCLUSIONS
that each 40 (x,lI) and e (YO) are closed-open-compact sub -thteach o 0 G(x) andhresp (yto) are; olosdhatpenoact sb Those n-ary fuzzy set operations have been characterized
sets of G(X) withrespect to-; it follows that each wl.ich induce weak homomorphic n-ary ordinary set opera-
,l o, the Baire o-aleebra generated by all compact - GS (i.e.. tions between random sets, given: (1) any given choice func-
compact and represented by an at most countable intersec - tion, i.e., mapping between F(X) and S(X) which picks for
tionof open) sets in 9" (See (81, sections 51, 52 for general each -iven fuzzy subset of X an equivalent random subset of
background.) Note that any typical compact - Gr set heic is X up to one- point coverages, and (2) any compatible stochas-

m tic process._ In particular, most ordinary fuzzy set operations
of the form (Z,a), where Z= (Z1)j=I .... .m Xi G(X) and their gcneralizationswer shown to induce naturally cor-

* m ~ m (0.l).hcrem responding operations among random sets. (For example, see
anda=-(j)j=i,.. ' m X (0.1}, where m may be a finite Tables 1, 2, the remarks in Theorem 6, and Eq. (19).) Wheni=! the choice function is either S(A) = SU (A) or S(A) T,

positive integer or+- .o (See ilalmos (81. Example 4. p.219.
for a related result.) If X is at most countably infinite, then A an arbitrary fuzzy subset of X, a large class of operations
since "will be separable, every compact set in 9%vill also be exists (including essentially all of the usual ones and their
a GS set and thusM tie Borel a-algebra, generated by all cam- generalizations) such that fuzzy sets formed from'finite com.

•s-bination of such operations applied to more primitive fuzzy
pact-open subsets of T. will be the same as So (181. Thcor- sets can be identified with corresponding random sets formed
em E, p. 218). For X not countable, then generally qo C . from similar combinations of ordinary set operaions applied
(proper subclass). While X has certain -desirable properties. it to their primitive random set components. Combining this
does not possess the regularity properties that qo does. result with a previous one (1161, as Theorems 6 and 7), allows
Analagous results hold for (S(AI) ..... S(An)) and its .ortrs- for complete flexibility in using fuzzy and/or random sets as
ponding probability space (G(X) X- -X G(X). C. p), where inputs in describing an unknown quantity V based on all of
o-algebras t ' ;' o, with. in general0 0 C0. where "' is this information.
the a-algebra generated by A X- -X T o is the Ba:re Future work will be directed towards applications to specific
o-algebra, relative to -P, generated by To X-- X.-ao andis systems of fuzzy set operations and further investigation of
the Borcl o-algcbra generated by X- -X,1. Thus, inordlt the relations among Lt.ome functions, compatible stochastic
to utilize regulaity properties. we will say ; mapping 0 processes over P(X). and weak homomorphisms. Relative to

G(X) X--XIX) - GtX) 1ts re) measurable ff ,- I . o ) the latter, it is of some interest to determine for a gwen n-aryCZX) 2. (X)arl. if 0 is ntirous,) measurable. ) ordinary set operation *. what are the possible corresponding
C -,- (Clearly, if is on tinuous, it is measurable.) 0-ary fuzzy set operatiens % which induce * homomorphic-

ally (weakly. for example), as the choice function and/or
Theorem 7 joint distributions of random sets are made to vary overall

Let n ;: I be arbitrarly fixed and S a given choice function combinations. Conversely. fora fixed fuzzy set operation.
with (Sfl)-. S[A ')hiaving aconsistent speciried disinbu- what possible random set operations does it induce as the

choice function andlor joint distribution of random sets vary?lion for each Al I ... An C FIX). where. motivated by thle

previous discussion, it is assuimed that the a.algebra corrcpons-
ding to each StAjp is "o. anti the d.algebra corresponding to
(SfA1I. - . StAn) is &. Then n.ary fu.y set operation * I teel set t-: o - cut, ,e mean the odinay set €-I .

inuhle-, a %Yak n-homomorphisim relative to sonic ordin~ajrB A
'- X, gvcn fumny set mem'bership ftciaon 0,A X - [0. I l+

-ary set operalion * being measurable LL ( has she follow. -

ng term. forall x X.Ai.. A.C FIXV 0 o I
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